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A unified linear viscous stability theory is developed for a certain class of strati- 
fied parallel channel and boundary-layer flows with Prandtl number equal to 
unity. Results are presented for plane Poiseuille flow and the asymptotic suction 
boundary-layer profile, which show that the asymptotic behaviour of both 
branches of the curve of neutral stability has a universal character. For velocity 
profiles without inflexion points it is found that a mode of instability disappears 
as 7, the local Richardson number evaluated at the critical point, approaches 
0.0554 from below. Calculations for Grohne’s inflexion-point profile show both 
major and minor curves of neutral stability for 0 < 7 < 0.0554; for 

0.0554 < 7 < 0,0773 

there is only a single curve of neutral stability; and, for 7 > 0-0773, the curves of 
neutral stability become closed, with complete stabilization being achieved for a 
value of 7 of about 0.107. 

1. Introduction 
Considerable effort has been expended in recent years on the study of the 

stability of stably stratified inviscid ptrallel flows. Central to this work, reviewed 
by Drazin & Howard (1967), are the theorems of Rayleigh and Miles. Rayleigh’s 
theorem,? which was derived for a homogeneous fluid, states that a necessary 
condition for instability is that the velocity profile possesses a point of inflexion. 
Miles’s (1961) theorem states that a suficient condition for stability of a stratified 
flow is that the local Richardson number exceed 2 throughout the flow. 

The conditionally destabilizing effect of viscosity through the action of the 
Reynolds stresses motivates a treatment of the viscous stability problem. A 
natural point of departure for this work is the stability theory involving the 
asymptotic solution (R +a) of the Orr-Sommerfeld equation already developed 
for unstratified viscous parallel flows. Results which have been obtained from the 
asymptotic theory, reviewed by Reid (1965), are in good agreement with those 
obtained by direct numerical integration of the governing equations. At large 
Reynolds numbers, the asymptotic approach has the advantage of avoiding the 
difficulties intrinsic to the numerical methods. 

t Rayleigh’s theorem has been generalized to stratified fluids by Synge (1933) but his 
result is not of much use here. 
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Attempts to treat the viscous problem have been made by Schlichting and 
Koppel. Schlichting (1935), for example, considered the stability of a stratified 
boundary-layer profile. Although he retained the effect of viscosity, he neglected 
the effect of heat conduction, thereby restricting his analysis to a fluid of infinite 
Prandtl number. More recently, Koppel(l964) obtained integral representations 
for the solutions of the more general sixth-order equation with arbitrary Prandtl 
number. For values of the Prandtl number different from unity, the kernels in 
Koppel’s integral representations involve Whittaker functions, and the analysis 
was not pursued further. By using the method of steepest descents, Koppel 
obtained asymptotic approximations to the solutions for a Prandtl number of 
unity but did not attempt to solve the characteristic value problem. 

For a Prandtl number of 1, a significant simplification of the mathematical 
analysis for the viscous solutions of the governing equations occurs, since it is 
then possible to factor the sixth-order equation, and it is then sufficient to  solve 
two third-order equations. This factorization was first recognized by Reid in 
connexion with the stability of spiral flow between rotating cylinders (Hughes & 
Reid 1968), and was later used by Gage & Reid (1968) in the investigation of the 
stability of thermally stratified plane Poiseuille flow. This paper presents a 
unified approach to the stability theory for stably stratified viscous parallel 
flows applicable to a large class of symmetric-channel and monotonic boundary- 
layer profiles. 

2. Formulation of the problem 
Consider a steady, thermally stratified, parallel flow of viscous, heat-con- 

dncting, incompressible fluid either in a boundary layer over a flat plate or in a 
channel. The direction of the flow will be denoted by the x co-ordinate and the 
vertical direction will be represented by the y co-ordinate. In  order to avoid 
analytical difficulties associated with multiple critical layers, the velocity profile 
in the boundary layer or in the half-channel will be assumed monotonic. 

All variables which appear in the governing equations are first made non- 
dimensional by appropriate combinations of a characteristic velocity U,, a 
characteristic length scale L,, and a characteristic temperature Tyc. The choice of 
the characteristic scales, of course, depends upon the particular class of velocity 
and temperature profiles being considered. For symmetric flow in a channel 
bounded by the planes y = 5 i d  we non-dimensionalize the governing equations 
with respect to the maximum velocity of the basic flow at the centre of the 
channel, half the depth of the channel, and half the imposed temperature dif- 
ference across the bounding planes. The equations governing the stability of the 
asymptotic suction boundary-layer profile are non-dimensionalized with respect 
to the velocity of the free stream, the displacement thickness S,, and the tempera- 
ture difference between the free stream and the rigid boundary. For more general 
boundary-layer profiles it will be assumed that the velocity increases mono- 
tonically to a free stream value U, at y = S i  and that for y > 13; the velocity and 
temperature are constant in the free stream. The boundary-layer thickness S i  
then replaces the displacement thickness as the characteristic length. 
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The dimensionless numbers relevant to the stability of stably stratified viscous 
parallel flows are: the Reynolds number, the bulk Richardson number, and the 
Prandtl number, defined by 

respectively, where y is the coefficient of thermal expansion. Although the bulk 
Richardson number emerges directly from the non-dimensionalization of the 
equations of motion, it does not measure the local behaviour of the velocity and 
temperature profiles. In  the subsequent analysis, therefore, it will be necessary to 
introduce the local Richardson number, 

where U and 0 are the dimensionless basic velocity and temperature profiles. 
In  this connexion, a parameter 7 will be introduced to represent the local Richard- 
son number evaluated at  the critical layer where the wave-speed equals the 
velocity of the undisturbed flow. 

2.1. The governing equations 

The stability of the basic flow to infinitesimal disturbances is governed by the 
Navier-Stokes, heat-conduction, and continuity equations. In  addition, the 
usual approximate equation of state is required to relate density and temperature 
variations. To the lowest order these equations determine consistent profiles of 
velocity and temperature which for strictly parallel flow are assumed to depend 
only on y. To the next order these equations become the governing equations for 
the linearized stability theory. As usual, the disturbances will be assumed to be 
periodic in x and t and of the form exp {ia(x - ct)},  where a is the wave-number in 
the x-direction and c is the complex wave-speed. Throughout this paper the 
imaginary part of c has been set equal to zero in order to investigate the case of 
neutral stability. 

Since it has been demonstrated by Gage & Reid (1968) that Squire's theorem is 
valid for the stability of stably stratified flows, it is sufficient to consider the two- 
dimensional problem of the stability of the basic flow to infinitesimal two- 
dimensional disturbances. A further simplification of the analysis is obtained by 
applying the Boussinesq approximation, i.e. neglecting variations in density 
except where they are multiplied by the gravitational acceleration. 

The two-dimensional problem then consists of the equations 

{D2- a2 - iaR( U - c)}u = iaRp + RU'V, 
{D2 - a2 - iaR( U - C)}V = RDp - RibRo, 

iatc + DV = 0, 
and (0' - a2 - hRP( U - c)}B = RPO'V, 

with the boundary conditions, 

to be imposed either at  a rigid boundary or at infinity. 

u = v = 8 = 0, (2.4) 

1-2 
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v = - ia$, we can combine the governing equations into the form 
By introducing the stream function $ ( y )  exp {ia(x - ct)} ,  with u = $' and 

L4$ = Rib8 and L26 = - 0'4, (2-5) 

(2.6) 

Eliminating 0 in equations (2.5) we have the sixth-order ordinary differential 
equation L2L4$+RibO'$ = 0 
with the boundary conditions 

1 where L2 (iaRP)-1(D2 - a2) - (U - C) 

and L4 zz (~cxR)-'(D' - - (U - C) (D2- a2) + U". 

(2.7) 

$ = $ ' = L 4 $ = 0  at y = k l  or y=O,co .  (2.8) 

An equation of the type (2.7) has been studied by Hughes & Reid (1968) in 
connexion with the stability of spiral flow between rotating cylinders. The 
solutions presented by them include inviscid solutions of a second-order dif- 
ferential equation and viscous solutions which are asymptotic (R+co, 9 fixed) 
approximations to the solutions of the full sixth-order differential equation. 
These latter solutions were developed first within the framework of the W.K.B. 
and local turning-point approximations, and subsequently combined to provide 
composite approximations of the Tollmien type. The W.K.B. method provides an 
outer approximation to the viscous solutions for the limit aR+m with the 
critical point bounded away from the lower boundary. Inner approximations to 
the viscous solutions are provided within the framework of the local turning-point 
approximation. These are employed when the critical layer approaches the 
lower boundary as aR +m. Since small values of c are associated with a critical 
layer near the lower boundary, it follows that, with c small enough, it is sufficient 
to consider these inner approximations to the viscous solutions. When c is large 
enough to preclude the sufficiency of the inner viscous approximations, it is 
useful to employ approximations to the viscous solutions which reduce in the 
limit aR+m t o  the local turning-point solutions or to the W.K.B. solution, 
depending upon whether the critical layer does or does not approach the lower 
boundary. These approximations represent composite solutions and are named 
after Tollmien, who introduced them into the stability theory for unstratified 
paralleI flow.? 

In the present study use was made of the asymptotic analysis presented in 
Hughes & Reid (1968). A brief outline of this analysis as it applies to the present 
work is presented in the following pages. 

In  order to develop approximations to the asymptotic solutions of (2.7) we 
first consider a formal expansion of the solution in inverse powers of iaR: 

$(y) = $'"(y)+(iaR)-l$(l)(y)+ ... , 

(u - C)2(D2 - a2) $ - (u - C) r$ -I- Rib@'# = 0. 

(2.9) 

where $@)(y) satisfies the inviscid equation, 

(2.10) 

t See Reid (1965) for a detailed discussion of the behaviour of these solutions to the 
Orr-Sommerfeld equation. 
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The solutions of (2.10) can be represented in the form 

&(Y) = (Y -YPP1(Y - Y J  and 42(Y)  = (Y -Yc)"~Pz(Y-Yc), (2.11) 

P(P-l)+T = 0, (2.12) 

where p ,  and p ,  are roots of the indicial equation 

with pl > p2.Pl(y- yc) and P2(y-yc) are power series in ( y -  y,) with leading 
terms of unity and with coefficients determined from the recursion relations 
developed in appendix 1 of Gage (1968). 

The inviscid solutions (2.11) possess algebraic branch points at the critical 
layer yc, and therefore cannot provide valid approximations in the full complex 
neighbourhood of yc. Their range of validity can be deduced by studying the 
behaviour of the viscous solutions developed below. They provide approximations 
to the two viscous solutions which are neutral in the sector containing the boun- 
dary point. They can be valid only in those sectors of the complex plane where the 
complete expansion of the viscous solution is not dominant. This sector is 
- 7n16 < arg ( y  - y,) < nl6, which, of course, includes any boundary points. 

2.2. The viscous solutions 
The viscous approximations to the solutions of (2.7) will be developed below in 
the local turning-point approximation for P = 1. If c is large it is necessary to 
consider composite solutions of the Tollmien type. For this reason the charac- 
teristic equations employing both approximations are developed below. The 
local turning-point approximations, however, have the advantage of simplicity. 

$(y) = ~ ( 0 ,  where 6 = (y- y,)/e and E = (iaRUJ)-), (2.13) 

Consider, then, the transformation 

and the expansion of the solution in powers of B :  

x(5,  E )  = X ' O ' ( E )  + €X'1'(5) + . . . . (2.14) 

The first approximation x ( O )  (5) satisfies the equation 

{(D2 - k)2Dz + ~ > x  = 0, (2.15) 

where D now represents d/dE. Equation (2.15), derived for P = 1, can now be 
factored, and it is sufficient to consider solutions of the two third-order equations 

x"' - Ex' 4- p i x  = 0, (2.16) 

where p<(i = 1,2)  are roots of the indicial equation (2.12). 

far from a boundary, we need only consider the solutions of (2.15), 
Since it is expected that viscous effects will be'small in the centre of a channel or 

x 3 ( 8  = 4 5 7  PI) and x&) = 4 ( 5 )  1321, (2.17) 

which are subdominantt in the sector IarglJ < in. The solutions Al(5,pi) are 
then uniquely determined to within a multiplicative constant. 

t These are the solutions defined in Hughes & Reid (1968) to (2.16), which are exponen- 
tially small far from the lower boundary. 
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2.3.  T h e  characteristic equation 

Provided that 0'(y) is an even function of y for symmetric channel flows the 
governing equations will be symmetric in y and it will be sufficient to  treat the 
lower half of the channel. Further, the symmetry of the basic flow enables us to 
consider the even and odd solutions separately. Since we expect the onset of 
instability to be associated with an even solution, the boundary conditions at 
y = I will be replaced by 

$' = $" = $@) = 0 at y = 0. (2 .18)  

Turning to the general boundary-layer situation described at  the beginning 
of 3 2 it is convenient to suppose that the velocity and temperature are continuous 
functions of y and monotonically increasing for 0 < y < 1 with Ii(?/) = 1 and 
0' = 0 for y > 1.  The inviscid solution valid in the free stream which satisfies the 
boundedness condition at  y = 00 is then of the form 

0 = Ke-ag,  (2 .19)  

where the constant K is determined (below) by matching 0 and 0' at y = 1.  
If we let y1 = - 1, y2 = 0 and y1 = 0, y2 = 1 for the channel and boundary-layer 

flows, respectively, it is possible to formulate the characteristic value problem in a 
unified manner. It is convenient for this purpose to let 

@ = A$1+$2 (2 .20)  

be the inviscid solution of ( 2 . 9 )  in the interval y1 < y < y2. 
For channel flows this solution is valid? a t  both the centre and the lower 

boundary. Since viscous effects are expected to be negligible at  the centre, A is 
determined by satisfying the boundary condition W(0) = 0. The other two 
boundary conditions ( 2 . 1 8 )  are then satisfied with an exponentially small error. 

Similarly, for the class of boundary-layer flows described above, .A is deter- 
mined by the matching conditions 

Ke-a = A ~ $ ~ ( 1 ) + & ( 1 )  ( 2 . 2 1 )  

and - a K e - a  = A$i(1)+&(1), (2 .22)  

(2 .23)  

The characteristic equation is obtained from the simultaneous satisfaction of 
the boundary conditions ( 2 . 8 )  at yl. If we take an approximation to the general ~- - 

solution of the form 4 = @ + C 3 X 3 + C 5 X 5 ,  ( 2 . 2 4 )  

then the first two conditions are 

and 

t Both qbl and $2 are valid approximations to two of the viscous solutions. 



Stability of viscous parallel flows 7 

The third condition requires further consideration and will be given below in an 
approximate form. Consider first the formal application of the operator L4 to the 
inviscid function Q,. With the aid of (2.10) this operation yields 

Thus, consistent with the approximations already made, 

(2.27) 

Formal application of the operator L4 to the viscous function x leads to  

{ U p ( X i 7  - &") + O( 1))x = 0) 

{ u p (  1 - p )  x' + O( 1))x = 0, or 

upon reference to (2.16). Again consistent with the present approach, 

L4x -+ €-1u;( 1 -p)x' (2.28) 

and finally setting L4r$ equal to zero implies 

@ ' ( Y J R i  Q, 
-- b ( Y l )  + C3e-1u;(1 - P l ) X ~ ( t i )  +C5e-1u;(1 -p2)&(f;l) = 0. (2.29) 

A non-trivial solution of the homogeneous system, (2.25), (2.26), and (2.28), 

C 

requires that the determinant of the Ci vanishes, 

I@(Yl) x 3 ( 5 1 )  x 5 ( 6 1 )  I 

Expansion and simplification then leads to the characteristic equation in the 
form 

where z = (aRU;)*( - y1 + yc) and F(z ,p )  is the generalized Tietjens function 

(2.32) 

If the critical layer is sufficiently removed from the lower boundary, better 
approximations to the viscous solutions are obtained by using composite solu- 
tions of the Tollmien type (see Hughes & Reid 1968, ch. 10). When these compo- 
site solutions are introduced into the characteristic equation, we obtain 

A'@, c, z ;  r )  = __ 4 J c  (p - 
3/44 p2)+ @ ( y J  {p1P(2,pl)  -p2F(2,pz)) 

+ ~ ) p ( ~ ) c - ~ ( U ~ ) ~ p ~ p ~ { F ( 2 , p ~ )  - F(2,p2)} = 0, (2.33) 
40 (Yc )  
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where (2.34) 

which reduces to (2.30) for small values of c. As we shall see in $3, the universal 
viscous limit with c+ 0 emerges in a natural way from (2.31). 

3. Results for flows without idexion points 
The analysis reviewed in $ 2  was employed in treating the stability of two 

stratified symmetric channel flows and one stratified boundary-layer flow. The 
results for plane Poiseuille flow and the asymptotic suction boundary-layer 
profile are presented below. Results for Grohne’s inflexion point profile will be 
considered in $ 4. Although no examples of the general boundary-layer situation 
defined in $ 2 were treated in detail, the class of profiles defined there satisfy the 
universal viscous limit discussed below. 

3.1. Plane Poiseuille $ow 

The results for stratified plane Poiseuille flow with velocity and temperature 
profiles 

U ( y )  = 1-y2 and O ( y )  = y 

were presented by Gage & Reid (1968). The curves of neutral stability obtained 
from the numerical solution of the characteristic equation were shown there in 
figure 2 and the corresponding neutral curves for the wave-speed c were shown 
in figure 3. The neutral curve for q = 0 shows the known results without strati- 
fication, and the appearance of the kink in the upper branch is associated with the 
loop in the Tietjens function. 

The effect of stable stratification is to increase the minimum critical Reynolds 
number and to decrease the region of instability bounded by the neutral curve. 
It was found that c+ 0, a+as(v), and z+z:(v) as R-too on both branches of the 
neutral curves. Finally, by the results of table 1 of Gage & Reid (L968), also 
plotted there in figure 4, the critical Reynolds number approaches infinity as 
7 + 0.0554. 

3.2. The asymptotic suction boundary layer 

The stability of the unstratified asymptotic suction boundary-layer profile has 
been studied within the framework of the asymptotic theory by Hughes & Reid 
(1965). This flow is of special significance because it is possible to obtain the 
solutions of the inviscid equation analytically in terms of hypergeometric 
functions. 

For P = 1 the basic velocity and temperature profiles that satisfy the momen- 
tum and heat conduction equations are given by (Miles 1967) 

1 - e-h 
U ( y )  = 1 - e-y7 V = - 1/R and O ( y )  = ~ 1 - e-c’ 

where 
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In  these equations V is the suction velocity and R = U, 6,lv in keeping with the 
use of the displacement thickness as characteristic length. The asymptotic 
suction boundary-layer profile is an almost parallel flow with the suction velocity 
slightly modifying the governing equations. Since it can be shown that these 
modifications occur at  an order higher than the order of terms retained in the 
present asymptotic analysis, it is possible to treat the asymptotic suction 
boundary layer consistently as a parallel flow. 

10 lo2 103 

R* 
104 

FIGURE 1. The curves of neutral stability for the stably stratified 
asymptotic suction boundary-layer profile. 

The exact solutions of the inviscid equation (2.9) for the stratified asymptotic 
suction boundary-layer profile with 0' = e-l/ are developed in the appendix. 

Figures 1 and 2 show the curves of neutral stability obtained for the asymptotic 
suction boundary-layer profile at  several values of 7. Comparison with the 
corresponding figures of Gage & Reid (1968) demonstrates the qualitative 
similarity of the effect of stable stratification upon the boundary layer, and upon 
the channel flow considered here. In fact, with 7 > 0 our calculations confirm 
that the viscous limits with c -+ 0, tc -+ tc8 and x -+ z,'. as R -+oo along both branches 
of the neutral curves are of the same form for both flows. Finally, from the results 
in table 1 and figure 3 we see that the minimum critical Reynolds number again 
approaches infinity as T,I -+ 0.0554. 
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t] = 0.00 

0 0.05 0.10 0.15 0.20 

a 

FIGURE 2. The relationship between the wave-number OL and the 
wave-speed c along the neutral curves of figure 4. 

Rf 

FIGURE 3. The variation of the minimum critical Reynolds nuinber 
with 7 for the asymptotic suction boundary-layer profile. 
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7 
0~0100 
0.0200 
0.0300 
0.0350 
0-0390 
0.0430 
0.0470 
0-0500 
0.0510 
0.0520 
0.0528 
0.0554 

RiO 
0.0087 
0.0179 
0.0277 
0.0328 
0-0370 
0.0413 
0.0457 
0.0491 
0.0503 
0.0514 
0.0523 
0.0554 

z 
3.18 
3.24 
3.30 
3.33 
3-38 
3.38 
3.41 
3.44 
3.45 
3.46 
3.46 
3.48 

a 
0.147 
0.1335 
0.1176 
0.1087 
0-1014 
0.0930 
0.0844 
0.0771 
0.0746 
0.0719 
0.0698 
- 

C 2 
0.131 
0.1052 
0.0776 
0.0632 
0.0514 
0.0393 
0.0270 
0.0175 
0.0143 
0.0111 
0.0087 
0~0000 

z$ x 10-2 
0.4479 
0.5913 
0.8559 
1.091 
1.388 
1.884 
2.870 
4.596 
5.704 
7.473 
9.687 

03 

TABLE 1. The values of the minimum critical Reynolds number and related parameters 
for the stably stratified asymptotic suction boundary-layer profile 

3.3. The universal viscous limit of the characteristic equation 

In  the theory for the stability of homogeneous parallel shear flow two different 
kinds of limits are achieved as viscosity vanishes along the curves of neutral 
stability. The first class consists of limits where aR-too, such that the critical 
layer does not approach the rigid boundary. These limits are correctly referred to 
as inviscid limits and occur only in flows with an inflexion point in the basic 
velocity profile. The second class consists of limits where aR-too, such that the 
critical layer approaches the lower boundary. This limit is referred to here as a 
viscous limit, provided the viscous terms in the characteristic equation (2.31) are 
of order unity in the limit yc+ y1 or, equivalently, c + 0. Viscous terms are 
retained therefore in the limit e+ 0 whenever x (or El = (yl - y,)/e) remains finite. 
A limit of this type is expected to be associated with the weak viscous Tollmien- 
Schlichting mechanism. 

For homogeneous parallel flows the viscous limit which occurs along the lower 
branch of the curve of neutral stability is known to lead to a universal result, 
z+ 2.294 as c -+ 0, independent of the basic velocity profile. It is demonstrated 
below for stratified flow that this universal behaviour occurs in viscous limits 
along both branches of the curves of neutral stability for 0 < rq < 0.0554. Uni- 
versality is guaranteed, since only the leading terms in the expansion of the 
inviscid solutions about the critical point enter the limiting form of the charac- 
teristic equation. 

As the critical point approaches the lower boundary for fixed 7, the character- 
istic equation (2.31) obtained for symmetric channel and monotonic boundary- 
layer flows has the limiting form 

where (3.5) 

In  (3.4) only Q can depend on the specific velocity and temperature profiles. 
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However, as c -+ 0 and gc --f yl, it follows from (2.11) that 

$l(?/l)-fexp (-inP1) ( Y C - Y l ) p l  and 42(Yl)*exp (-inP2) ( 9 C - Y 1 ) ” ’ 7  (3.6) 

so that Q has the limiting form 

. (3.7) Q = 
Aplexp (-in?)l) (yC-yl)P11-Pzexp(-inP2) (!fC-yl)Pa 

A exp ( - inP1) (Yc - Y l P 1 +  exp ( - i77P2) (Yc- Y l P  
Furthermore, consistent with a viscous limit, for finite values of z ,  as R +co and 
c -f 0 on both branches of the neutral curves, we have 

A N a$(yc - g1)-@1-P2), (3.8) 

where a,‘ are eigenvalues (associated with z:) of the characteristic equation in the 
viscous limit. Thus, in the limit yc-+yl, Q can be expressed in the form 

In order to obtain the limiting values of z along both branches of the curve of 
neutral stability for any given value of 7 it is necessary to solve the limiting form 
(3.4) of the characteristic equation. Table 2 contains the results of this calculation, 
and figure 4 shows the variation of z,’ with 7. 

7 
0~0000 
0~0100 
0*0200 
0.0300 
0.0400 
0.0500 
0.0520 
0.0540 
0.0554 

as- 
2.296 
2.186 
2.068 
1.938 
1.781 
1.572 
1.512 
1.433 
1.31 

2s- 

2.297 
2.420 
2.555 
2.707 
2.887 
3.134 
3.207 
3.307 
3.48 

a: 
1.000 
1.005 
0.977 
0.983 
1.017 
1.109 
1.143 
1-196 
1.31 

z t  
03 

5.073 
4.645 
4.378 
4.136 
3.850 
3.772 
3.667 
3.48 

TABLE 2. The values of the parameters associated with the universal viscous limit along the 
curves of neutral stability 

Since the wave-number does not appear in the limiting form of the charac- 
teristic equation, it is necessary to  consider how it is determined. With A+co 
according to (3.8) all conditions a t  the rigid boundary are satisfied in the viscous 
limit of the characteristic equati0n.t Requiring the inviscid solution q51 to satisfy 
the condition &(y,) = 0 determines the limiting value of the wave-number. Since 
the inviscid solutions depend upon the basic velocity and temperature profiles, 
these limiting values are not universal. 

Returning to the universal viscous behaviour of the eigensolutions of (3.4) 
shown in figure 7 we observed that as q + 0.0554 the limiting values of z on the 
upper and lower branches approach a common limit. This fact implies the 

t A + 03 is consistent with a theorem of Miles (1961) from the inviscid theory of strati- 
fied flow. If  the Reynolds stress is zero, A must be zero or infinity. The viscous nature of 
the limit R + 03 at the lower boundary precludes application of Miles’s result there. 
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minimum critical Reynolds number approaches infinity as this common limit is 
achieved. Physically, this means that a weak instability, purely viscous in 
origin, is completely stabilized as 7 -+ 0.0554 from below. 

2 8  

FIGURE 4. The variation with 7 of the limiting values 
of z on both branches of the neutral curves. 

4. Results for a flow with an inflexion point 
In  8 4 we consider the stability of Grohne’s (1954) inflexion-point profile with 

thermal stratification. This profile was chosen because of its simple analytical 
form. It is a symmetric channel flow with dimensionless basic velocity 

U(y) = (42 - 1) + (2 - 4 2 )  cos 3ny/4. (4.1) 

@(Y) = Y. (4.2) 

For convenience we have taken the temperature profile to  be linear, i.e. 

As pointed out in $1, considerable work has been done investigating the 
stability of stably stratified parallel flow of an inviscid fluid. Essentially, this 
work involves the solution of a characteristic value problem? of the form 

P(., c; 7) = 0. 

Figures 5 and 6 show the result of such a calculation for Grohne’s profile. On the 
basis of these inviscid results, complete stabilization is predicted for 7 = 0-0773. 

The results for the viscous analysis using Tollmien composite solutions and the 
characteristic equation (2.32) for the stability of the inflexion point profile are 
presented in figures 8-10. The special values of q which emerge from the viscous 
limit of 3 3 and the inviscid calculations described above conveniently divide 7 
into three distinct ranges. 

In  the fkst range, 0 < 7 < 0.0554, there is a weak instability, viscous in origin, 
coexistent with a strong instability associated with the inflexion point. The 

t For the purposes of the present paper we required W(y,) = @(yl) = 0. No attempt 
was made to show the resulting neutral curves to be stability boundaries. 
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effect of the strong instability is that the neutral curyes approach inviscid limits 
with z - f c o  as R +co, thereby recovering the inviscid eigenvalues a,, c, along two 
branches. In this limit the inviscid eigensolution QS is a multiple of q5z. However, 
the weak, purely viscous instability recovers the universal viscous limit discussed 
in Q 3, with z -+ z,, as R -fa along another two branches of the neutral curves. These 
considerations require the existence of a minor curve of neutral stability. 

Figure 7 (a )  contains a schematic diagram of the major and minor curves of 
neutral stability for a fixed value of q in the first range. The lower branch of the 
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0.2 

0 0.02 0.04 0.06 0.08 

?1 
FIGURE 5. The dependence of the inviscid eigenvalue for the 

wave-number a upon 7 for Grohne’s profile. 

11 
FIGURE 6. The dependence of the inviscid eigenvalue for the 

wave-speed c upon 7 for Grohne’s profile. 
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major curve and the lower branch of the minor curve correspond respectively to 
the lower and upper branches of the neutral curves for profiles without inflexion 
points. Furthermore, the limiting values of z on both of these branches must come 
from the solution of the characteristic value problem in the universal viscous 
limit c+O discussed in $3. The upper branches of the major and minor curves 
recover the inviscid eigensolutions of figures 5 and 6 in an inviscid limit. Finally, 
as 31 -+ 0.0554, the lower branches of the major and minor curves join together. 

FIGURE 7. Schematic diagrams of the neutral curves for Grohno's 
inilexion-point profile in the three ranges of r. 
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FIGURE 8. The curves of neutral stability for Grohne's profile with 
stable stratification. A, complete stabilization. 
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For 0.0554 < 7 < 0.0773 we have a continuous neutral curve (see schematic 
diagram in figure 7 ( b ) )  the upper branch of which corresponds to the upper 
branch of the old major curve and the lower branch of which corresponds to the 
upper branch of .the old minor curve. On both the upper and lower branches, 
inviscid limits are attained as z + co and the inviscid eigensolutions are recovered. 

As 7 + 0.0773 the neutral curves close up, but there is a residual instability (see 
schematic diagram in figure 7 (c)). As 7 increases beyond that value, the region 
of instability contained within the closed neutral curves decreases until complete 
stabilization is achieved at a finite Reynolds number, as indicated in figure 10. 

r 
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0.50 

0.40 

0.30 

0.20 

0.10 
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a 

FIGURE 9. The relationship between the wave-number a and the wave-speed 
c along the neutral curves of figure 7. A, complete stabilization. 

1 10 

R4 
102 

FIGVFCE 10. The variation with q of the minimum critica.1 Reynolds 
number for Grohne’s profile. A,  complete stabilization. 
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5. Concluding remarks 
In $ 3 and 3 4 we have obtained some fairly general results for the stability of 

stably stratified, viscous, parallel shear flows in the presence of at  least one rigid 
boundary. When the velocity profile had no inflexion point, we found that there 
exists a universal value of 7 for which a weak instability of viscous origin is 
completely stabilized. However, for profiles with an inflexion point, the results 
for Grohne’s profile demonstrate that the limiting value of 7 for complete 
stabilization of the viscous flow may be somewhat greater than that required to 
stabilize the corresponding inviscid flow. 

All of these results have been developed within the framework of the asymptotic 
(R+co) theory for the stability of parallel shear flows to infinitesimal dis- 
turbances. The Boussinesq approximation has been made and only the case of 
P = 1 has been treated. 

The fact that our limiting value of 7 = 0.0554 for complete stabilization of 
flows without an inflexion point is close to the value 0.0409, which was found 
by Schlichting (1935) for the Blasius profile, is somewhat surprising in view of 
the differences between the two approaches. As pointed out in $1, Schlichting 
ignored heat conduction, so that he treated a fourth-order governing differential 
equation as appropriate for a fluid of infinite Prandtl number. Although it would 
be tempting to conclude from Schlichting’s result that the limiting value of 7 
varies weakly with the Prandtl number, upon closer examination it appears that 
the assumption of negligible heating due to viscous dissipation, made in both 
approaches, would be inconsistent for a fluid of infinite Prandtl number. 

Very little experimental work has been done on the stability of thermally 
stratified parallel shear flows. Perhaps the best experimental results available 
are those of Reichardt, reported by Schlichting (1935). Reichardt investigated 
the transition to turbulence in developing boundary layers on the upper and 
lower plates of a wind-tunnel 16 m long with a rectangular cross-section 1 m 
wide and 25 cm deep. The flow was stably stratified by heating the upper plate 
with steam and cooling the lower plate with water (10 “C). Because the tempera- 
ture of the incoming air was closer to the temperature of the lower plate, the 
profiles of temperature and velocity were asymmetric, with a more stable strati- 
fication under the upper plate. These velocity and temperature profiles were 
measured by hot-wire probes. The decision as to whether the flow was laminar or 
turbulent was made with reference to the amplitude of oscillations measured by 
these probes and recorded on an oscillograph. 

In  order to make any meaningful comparison between theory and experiment, 
it would be necessary to plot experimental points of R and Xi,, say, on the graph 
for the corresponding theoretical stability boundary. Since the boundary layers 
in Reichardt’s work are essentially Blasius boundary layers, which were not 
treated here, one can do no more than point out that Reichardt’s results are 
consistent with the complete stabilization of an uninflected velocity profile when 
the local Richardson number exceeds 0.0554 throughout the flow. 

Schlichting did treat the stratified Blasius boundary-layer profile and he did 
make a comparison between his theoretical results and the observations of 

2 F L M  47 
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Reichardt. This was accomplished by fitting theoretical velocity and temperature 
profiles to the observed profiles, computing the local Richardson number at the 
boundary and the Reynolds number of the flow, and plotting each point on the 
graph containing the theoretical stability boundary, noting whether the flow 
was laminar or turbulent. Although the result of these calculations (shown in 
figure 15 of Schlichting 1935) were consistent with Schlichting’s theoretical 
predictions, not enough experimental points were included for a definitive 
verification of the theoretical stability boundary. I n  this connexion there appears 
to have been some experimental difficulty in obtaining Reynolds numbers 
much above 2000, and, for that reason, instability was not observed when the 
local Richardson number evaluated at the boundary was more than 0.022. 

The next logical step in developing the theory for the stability of stratified 
viscous parallel flow is to consider unbounded flow of the jet or shear-layer type. 
The stability characteristics are expected to differ somewhat from the bounded 
and semi-bounded flows treated here. Specifically inviscid eigensolutions should 
be recovered on both branches of a continuous neutral curve for any q > 0 but less 
than the value of 7 which stabilizes the inviscid flow. It is conjectured therefore 
that the viscous limits reported here are relevant only to bounded or semi- 
bounded flows. 

The investigation of the stability of a stratified jet may be of relevance to the 
study of a generating mechanism for clear-air turbulence associated with the jet 
stream. In  this connexion, Ludlam (1967) has reported the appearance of billow 
clouds in a region just below the axis of a jet stream where the averaged local 
Richardson number was determined to be t. At the present time, most observa- 
tions concerning clear-air turbulent phenomena are being made in regions of 
developed turbulence. Before any critical evaluation can be made of the relevance 
of shear flow instability to the generation of clear-air turbulence, observations of 
velocity and temperature profiles will have to be made upstream in regions of 
initial instability. 

In  conclusion, theoretical results have been presented in this paper for a large 
class of stably stratified viscous parallel shear flows. Although the available 
experimental results are consistent with the theory, no critical test has been 
provided. I can only hope that the results presented here will in the near future 
stimulate further experimental work on this problem, and that these results will 
be of some use to meteorologists concerned with stability mechanisms associated 
with the atmospheric boundary layer and the jet stream. 

The bulk of the research reported in this paper was presented as a Ph.D. 
dissertation in the Department of the Geophysical Sciences at the University of 
Chicago under the supervision of Professor W. H. Reid. Financial support was 
provided there by the National Science Foundation (GK-944) and by the U.S. 
Navy (N 00014-67-0285-0002). Computations were completed at the University of 
Maryland with the financial support of the National Aeronautics and Space 
Administration Grant (NSG-398) to the Computer Science Center. 
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Appendix. The exact solutions of the inviscid equation for the stratified 
asymptotic suction boundary layer 

Consider the inviscid equation (2.10) with 0’ = e-v and let 

4 ( Y )  = e-””f(t), 

where t = toe-?’ and to = l / l - c .  (A 1) 

The inviscid equation then becomes 

1+2a 1 
( 1  - t ) t  

where the primes now denote differentiation with respect to t. A further trans- 
formation is required to get equation (A 2) in the form of Gauss’s equation, and 
for this purpose we take 

f ( t )  = ( 1  - t)YJv), (A 3) 

so that F( t )  then satisfies the equation 

t (1 -  t)F’’+{(l+ 2a) ( 1  - t )  - Zyt]F’+ (1 - (1 + Za)y+q]J’ = 0, (A4) 

where q is still the local Richardson number evaluated at the critical point 
and is equal to Rib/( 1 - c) provided y is identified with p from the power series 
solution. 

Since the solution of (A 4) has to be evaluated at  to = I / (  1 - c)  > 1 and since the 
hypergeometric equation has a branch point at  t = 1, it is necessary to obtain the 
analytic continuation of the solution of (A 4). The solution can be given in terms 
of Gauss7s hypergeometric function; and, with the proper analytic continuation 
(see, e.g. Erdelyi et ab. 1953), we have 

and 

Finally, the solution f ( t )  and its first derivative evaluated at  the boundary, 
t = to, are given by 

f ( t 0 )  = t,)rP(p, q7p + q-  r + 1;  1 -to) 

+A,(l - to)(1-y)3’(r-p, r -q ,  r -p-q+ 1; 1 - t o )  (A 7) 
2-2 
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and 

f ’ ( to)  = - A,y( 1 - to)(r-l)F(p, q, p + q - r + 1 ; 1 - to)  

- A 2 ( l  - y )  (1 -to)-7F(r-p, r -  q, r -p-q+ 1;  1 - t o )  

where the correct branch is specified by taking 
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